메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Ergun, Mustafa (Department of Civil Engineering, Karadeniz Technical University) Ates, Sevket (Department of Civil Engineering, Karadeniz Technical University)
저널정보
테크노프레스 Structural engineering and mechanics : An international journal Structural engineering and mechanics : An international journal 제53권 제2호
발행연도
2015.1
수록면
205 - 226 (22page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Finite element method (FEM) is an effective quantitative method to solve complex engineering problems. The basic idea of FEM for a complex problem is to be able to find a solution by reducing the problem made simple. If mathematical tools are inadequate to obtain precise result, even approximate result, FEM is the only method that can be used for structural analyses. In FEM, the domain is divided into a large number of simple, small and interconnected sub-regions called finite elements. FEM has been used commonly for linear and nonlinear analyses of different types of structures to give us accurate results of plane stress and plane strain problems in civil engineering area. In this paper, FEM is used to investigate stress analysis of a shear wall which is subjected to concentrated loads and fundamental principles of stress analysis of the shear wall are presented by using matrix displacement method in this paper. This study is consisting of two parts. In the first part, the shear wall is discretized with constant strain triangular finite elements and stiffness matrix and load vector which is attained from external effects are calculated for each of finite elements using matrix displacement method. As to second part of the study, finite element analysis of the shear wall is made by ANSYS software program. Results obtained in the second part are presented with tables and graphics, also results of each part is compared with each other, so the performance of the matrix displacement method is demonstrated. The solutions obtained by using the proposed method show excellent agreements with the results of ANSYS. The results show that this method is effective and preferable for the stress analysis of shell structures. Further studies should be carried out to be able to prove the efficiency of the matrix displacement method on the solution of plane stress problems using different types of structures.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0