메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Chen, Jian (Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University) Chen, Jie (Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University) Ding, Hong-Yan (Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University) Pan, Qin-Shi (Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University) Hong, Wan-Dong (Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University) Xu, Gang (Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University) Yu, Fang-You (Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University) Wang, Yu-Min (Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University)
저널정보
아시아태평양암예방학회 Asian Pacific journal of cancer prevention : APJCP Asian Pacific journal of cancer prevention : APJCP 제16권 제12호
발행연도
2015.1
수록면
5,095 - 5,099 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background: The statistical methods to analyze and predict the related dangerous factors of deep fungal infection in lung cancer patients were several, such as logic regression analysis, meta-analysis, multivariate Cox proportional hazards model analysis, retrospective analysis, and so on, but the results are inconsistent. Materials and Methods: A total of 696 patients with lung cancer were enrolled. The factors were compared employing Student's t-test or the Mann-Whitney test or the Chi-square test and variables that were significantly related to the presence of deep fungal infection selected as candidates for input into the final artificial neural network analysis (ANN) model. The receiver operating characteristic (ROC) and area under curve (AUC) were used to evaluate the performance of the artificial neural network (ANN) model and logistic regression (LR) model. Results: The prevalence of deep fungal infection from lung cancer in this entire study population was 32.04%(223/696), deep fungal infections occur in sputum specimens 44.05%(200/454). The ratio of candida albicans was 86.99% (194/223) in the total fungi. It was demonstrated that older (${\geq}65$ years), use of antibiotics, low serum albumin concentrations (${\leq}37.18g/L$), radiotherapy, surgery, low hemoglobin hyperlipidemia (${\leq}93.67g/L$), long time of hospitalization (${\geq}14$days) were apt to deep fungal infection and the ANN model consisted of the seven factors. The AUC of ANN model($0.829{\pm}0.019$)was higher than that of LR model ($0.756{\pm}0.021$). Conclusions: The artificial neural network model with variables consisting of age, use of antibiotics, serum albumin concentrations, received radiotherapy, received surgery, hemoglobin, time of hospitalization should be useful for predicting the deep fungal infection in lung cancer.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0