메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Nirmala, Subramanian (Bioinformatics Division, School of Biosciences and Technology, VIT University) Sudandiradoss, Chinnappan (Bioinformatics Division, School of Biosciences and Technology, VIT University)
저널정보
아시아태평양암예방학회 Asian Pacific journal of cancer prevention : APJCP Asian Pacific journal of cancer prevention : APJCP 제14권 제7호
발행연도
2013.1
수록면
4,167 - 4,175 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A najor current challenge and constraint in cervical cancer research is the development of vaccines against human papilloma virus (HPV) epitopes. Although many studies are done on epitope identification on HPVs, no computational work has been carried out for high risk forms which are considered to cause cervical cancer. Of all the high risk HPVs, HPV 16, HPV 18 and HPV 45 are responsible for 94% of cervical cancers in women worldwide. In this work, we computationally predicted the promiscuous epitopes among the E6 proteins of high risk HPVs. We identified the conserved residues, HLA class I, HLA class II and B-cell epitopes along with their corresponding secondary structure conformations. We used extremely precise bioinformatics tools like ClustalW2, MAPPP, NetMHC, Epi,Jen, EpiTop 1.0, ABCpred, BCpred and PSIPred for achieving this task. Our study identified specific regions 'FAFR(K)DL' followed by 'KLPD(Q)LCTEL' fragments which proved to be promiscuous epitopes present in both human leukocyte antigen (HLA) class I, class II molecules and B cells as well. These fragments also follow every suitable character to be considered as promiscuous epitopes with supporting evidences of previously reported experimental results. Thus, we conclude that these regions should be considered as the important for design of specific therapeutic vaccines for cervical cancer.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0