메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Kang, Joo-Ho (Department of Mathematics, Daegu University)
저널정보
호남수학회 호남수학학술지 호남수학학술지 제31권 제2호
발행연도
2009.1
수록면
259 - 265 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Let $\mathcal{L}$ be a subspace lattice on a Hilbert space $\mathcal{H}$. Let x and y be vectors in $\mathcal{H}$ and let $P_x$ be the projection onto sp(x). If $P_xE$ = $EP_x$ for each E ${\in}\;\mathcal{L}$, then the following are equivalent. (1) There exists an operator A in Alg$\mathcal{L}$ such that Ax = y, Af = 0 for all f in $sp(x)^{\perp}$ and A ${\geq}$ 0. (2) sup ${\frac{{\parallel}E^{\perp}y{\parallel}}{{\parallel}E^{\perp}x{\parallel}}:E{\in}\mathcal{L}}$ < ${\infty}$ < x, y > ${\geq}$ 0. Let X and Y be operators in $\mathcal{B}(\mathcal{H})$. Let P be the projection onto $\overline{rangeX}$. If PE = EP for each E ${\in}\;\mathcal{L}$, then the following are equivalent: (1) sup ${\frac{{\parallel}E^{\perp}Yf{\parallel}}{{\parallel}E^{\perp}Xf{\parallel}}:f{\in}\mathcal{H},E{\in}\mathcal{L}}$ < ${\infty}$ and < Xf, Yf > ${\geq}$ 0 for all f in H. (2) There exists a positive operator A in Alg$\mathcal{L}$ such that AX = Y.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0