메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Chai, Y.D. (Department of Mathematics, Sungkyunkwan University) Lee, Young-Soo (Department of Mathematics, Sungkyunkwan University)
저널정보
호남수학회 호남수학학술지 호남수학학술지 제34권 제3호
발행연도
2012.1
수록면
403 - 408 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this paper, we prove that if K is a convex body in $E^n$ and $E_i$ and $E_o$ are inscribed ellipsoid and circumscribed ellipsoid of K respectively with ${\alpha}E_i=E_o$, then $\[({\alpha})^{\frac{n}{p}+1}\]^n{\omega}^2_n{\geq}V(K)V({\Gamma}^{\ast}_pK){\geq}\[(\frac{1}{\alpha})^{\frac{n}{p}+1}\]^n{\omega}^2_n$. Lutwak and Zhang[6] proved that if K is a convex body, ${\omega}^2_n=V(K)V({\Gamma}_pK)$ if and only if K is an ellipsoid. Our inequality provides very elementary proof for their result and this in turn gives a lower bound of the volume product for the sets of constant width.

목차

등록된 정보가 없습니다.

참고문헌 (8)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0