메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Kang, Oh-Jin (Department of Mathematics, University of Incheon) Kim, Joo-Hyung (Department of Mathematics Education, Wonkwang University)
저널정보
호남수학회 호남수학학술지 호남수학학술지 제34권 제2호
발행연도
2012.1
수록면
279 - 287 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Let $k$ be a field containing the field $\mathbb{Q}$ of rational numbers and let $R=k[x_{ij}{\mid}1{\leq}i{\leq}m,\;1{\leq}j{\leq}n]$ be the polynomial ring over a field $k$ with indeterminates $x_{ij}$. Let $I_t(X)$ be the determinantal ideal generated by the $t$-minors of an $m{\times}n$ matrix $X=(x_{ij})$. Eagon and Hochster proved that $I_t(X)$ is a perfect ideal of grade $(m-t+1)(n-t+1)$. We give a structure theorem for a class of determinantal ideals of grade 3. This gives us a characterization that $I_t(X)$ has grade 3 if and only if $n=m+2$ and $I_t(X)$ has the minimal free resolution $\mathbb{F}$ such that the second dierential map of $\mathbb{F}$ is a matrix defined by complete matrices of grade $n+2$.

목차

등록된 정보가 없습니다.

참고문헌 (8)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0