메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
An, Zhengzhe (Department of Radiation Oncology, Chungbuk National University College of Medicine) Liu, Xianguang (Department of Radiation Oncology, Chungbuk National University College of Medicine) Song, Hye-Jin (Department of Radiation Oncology, Chungbuk National University College of Medicine) Choi, Chi-Hwan (Department of Radiation Oncology, Chungbuk National University College of Medicine) Kim, Won-Dong (Department of Radiation Oncology, Chungbuk National University College of Medicine) Yu, Jae-Ran (Department of Environmental and Tropical Medicine, Konkuk University College of Medicine) Park, Woo-Yoon (Department of Radiation Oncology, Chungbuk National University College of Medicine)
저널정보
대한방사선종양학회 Radiation oncology journal : ROJ Radiation oncology journal : ROJ 제30권 제2호
발행연도
2012.1
수록면
78 - 87 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: Troglitazone (TRO) is a peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) agonist. TRO has antiproliferative activity on many kinds of cancer cells via G1 arrest. TRO also increases $Cu^{2+}/Zn^{2+}$-superoxide dismutase (CuZnSOD) and catalase. Cell cycle, and SOD and catalase may affect on radiation sensitivity. We investigated the effect of TRO on radiation sensitivity in cancer cells in vitro. Materials and Methods: Three human cervix cancer cell lines (HeLa, Me180, and SiHa) were used. The protein expressions of SOD and catalase, and catalase activities were measured at 2-10 ${\mu}M$ of TRO for 24 hours. Cell cycle was evaluated with flow cytometry. Reactive oxygen species (ROS) was measured using 2',7'-dichlorofluorescin diacetate. Cell survival by radiation was measured with clonogenic assay. Results: By 5 ${\mu}M$ TRO for 24 hours, the mRNA, protein expression and activity of catalase were increased in all three cell lines. G0-G1 phase cells were increased in HeLa and Me180 by 5 ${\mu}M$ TRO for 24 hours, but those were not increased in SiHa. By pretreatment with 5 ${\mu}M$ TRO radiation sensitivity was increased in HeLa and Me180, but it was decreased in SiHa. In Me180, with 2 ${\mu}M$ TRO which increased catalase but not increased G0-G1 cells, radiosensitization was not observed. ROS produced by radiation was decreased with TRO. Conclusion: TRO increases radiation sensitivity through G0-G1 arrest or decreases radiation sensitivity through catalase-mediated ROS scavenging according to TRO dose or cell types. The change of radiation sensitivity by combined with TRO is not dependent on the PPAR ${\gamma}$ expression level.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0