메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Min, Hee-Jeong (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University) Kim, Chan-Soo (Warm and Subtropical Forest Research Center, National Institute of Forest Service) Hyun, Hwa-Ja (Warm and Subtropical Forest Research Center, National Institute of Forest Service) Bae, Young-Soo (Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University)
저널정보
한국목재공학회 목재공학(Journal of the Korean Wood Science and Technology) 목재공학 제45권 제6호
발행연도
2017.1
수록면
682 - 688 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Fresh japanese anise (Illicium anisatum L.) tree leaves were collected and ground after drying. The essential oils of the leaves were analyzed by gas chromatography-mass spectrometry (GC-MS) using headspace (HS) and solid phase-microextra (SPME) methods. Volatile components of the leaves were identified 21 and 65 components in HS and SPME, respectively. The main components of the essential oils obtained by HS method were eucalyptol (36.7%), (+)-sabinene (15.61%), ${\delta}$-3-carene (6.87%), ${\alpha}$-pinene (6.07%), ${\gamma}$-terpinen (5.72%), ${\alpha}$-limonene (5.26%), ${\beta}$-myrcene (4.13%), ${\alpha}$-terpinene (4.04%) and ${\beta}$-pinene (3.73%). The other components were less than 3.5%. SPME method also showed that eucalyptol (17.88%) was main. The other were 5-allyl-1-methoxy-2 (13.29%), caryophyllene (6.09%), (+)-sabinene (5.60%), ${\alpha}$-ocimene (4.89%) and ${\beta}$-myrcene (3.73%), and the rest were less amounts than 3.5%. This work indicated that many more volatile components were isolated, comparing to the previous literature data and that SPME method was much more effective than HS method in the analysis of the volatile components.

목차

등록된 정보가 없습니다.

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0