메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Jung, Jong-Woo (Department of Science Education, Ewha Womans University) Han, Hye-Rim (Division of Forest Insect Pests and Diseases, Korea Forest Research Institute) Ryu, Sung-Hee (School of Biological Sciences, Seoul National University) Kim, Won (School of Biological Sciences, Seoul National University)
저널정보
한국통합생물학회 Animal cells and systems Animal cells and systems 제14권 제1호
발행연도
2010.1
수록면
31 - 36 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The pinewood nematode Bursaphelenchus xylophilus causes pine wilt disease and is a serious economic concern for the forest industry of South Korea. To achieve effective control with limited resources, it is necessary to clarify the transmission routes and mechanisms of dispersal of this organism. Highly polymorphic and easy-to-use molecular markers can be used for investigating this aspect. In this study, we evaluated the usefulness of amplified fragment length polymorphisms (AFLPs) for investigating the genetic variations of B. xylophilus and related individuals from China, Japan, and South Korea. The AFLP patterns obtained in our study were similar to the microsatellite patterns reported in a previous study; our AFLP patterns indicated high genetic variability and cryptic genetic structure, but did not indicate any peculiar geographic structure. Moreover, the genetic distances between individuals suggested that the Korean population was affected to a greater extent by the Chinese population than the Japanese population. Further, the gene flow among the related species appeared to be limited; however, there may be also the possibility of genetic introgression among species. These results confirm the usefulness of AFLPs for understanding the epidemiology of pine wilt disease, thereby contributing to the effective control of this disease.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0