메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Wang, Xin-Lei (Department of Animal Science, Institute of Agriculture Science and Technology, College of Agriculture & Life Science, Chonnam National University) Park, Sang-Hyun (Department of Animal Science, Institute of Agriculture Science and Technology, College of Agriculture & Life Science, Chonnam National University) Zhang, Qian (Department of Animal Science, Institute of Agriculture Science and Technology, College of Agriculture & Life Science, Chonnam National University) Lee, Bok-Rye (Department of Animal Science, Institute of Agriculture Science and Technology, College of Agriculture & Life Science, Chonnam National University) Kim, Tae-Hwan (Department of Animal Science, Institute of Agriculture Science and Technology, College of Agriculture & Life Science, Chonnam National University)
저널정보
한국초지조사료학회 한국초지조사료학회지 한국초지조사료학회지 제37권 제3호
발행연도
2017.1
수록면
195 - 200 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In order to compare greenhouse gases emission from different animal manures and to explore how different animal manures effect on soil mineralization, three kinds of materials, cattle, goat and chicken manure were amended to soil for 14 days incubation as CtS (cattle manure-amended soil), GS (goat manure-amended soil) and ChS (chicken manure-amended soil). Cumulative $NH_3$ emissions in all treatments were rapidly increased until day 7 and then it was slightly increased in three manure-amended soils but maintained in control until day 14. GS had the highest $NH_3$ emission at $0.14mg\;kg^{-1}$ during the entire experimental period. Emissions of $CO_2$ were highly increased by 7.8-, 9.0- and 12.4-fold in CtS, GS and ChS, respectively, compared to control at day 14. A significant increase of $N_2O$ emission in all treatments occurred within 5 days and then it was slightly increased until day 14. $N_2O$ emission was 2-fold higher in all manure-amended soils than that of control. Compared to day 1, inorganic N ($NH_4{^+}$ plus $NO_3{^-}-N$) content was highly increased in all four treatments at day 14. The increase rate was the highest in CtS treatment. Net N mineralization was increased by 4.0-, 2.4- and 2.9-fold in CtS, GS and ChS, respectively, compared to control. These results indicate that increase of $NH_3$, $CO_2$ and $N_2O$ gas emissions was positively related to high N mineralization.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0