메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Sharmin, Tanjina (Department of Genetic Engineering and Biotechnology, University of Rajshahi) Ferdousi, Zennat (Department of Genetic Engineering and Biotechnology, University of Rajshahi) Islam, M. Saiful (Department of Zoology, University of Rajshahi) Khan, M.Z.H. (Korea Institute of Science and Technology) Rahman, Atiqur (Department of Biotechnology, Daegu University)
저널정보
한국응용생명화학회 Applied Biological Chemistry Applied Biological Chemistry 제51권 제4호
발행연도
2008.1
수록면
294 - 298 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Effects of endosulfan (EN), an insecticide, and bleomycin (BL), an antibiotic, on the body weight in the normal mice, and the in vivo cell growth, tumor weight, and hematological parameters of the Ehrlich ascites carcinoma (EAC) cell-bearing Swiss albino mice Mus musculus were evaluated. EN and BL were respectively administered orally and intraperitoneally to the experimental mice; the control group consisted of EAC cell-bearing untreated mice only. EN reduced the body weight in normal mice, whereas BL resulted in a steady body weight compared to the control. EN increased the EAC cell count significantly by reducing the growth of normal viable cells. In contrast, BL reduced the cell count by increasing the proportion of viable cells in the body. The tumor weights induced by EN were significantly higher than those of the EAC control and the BL-treated animals. In comparisons with the control and the BL mice, hematological parameters such as hemoglobin (%) and the number of RBC and lymphocytes were lowered, while counts of WBC, neutrophils, and monocytes were elevated after EN treatments. These results show that BL is capable of reducing the EN-induced neoplastic and haematological alterations in the mice under laboratory conditions.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0