메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Arunakumara, Kkiu (Department of Crop Science, Faculty of Agriculture, University of Ruhuna) Walpola, Buddhi Charana (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University) Yoon, Min-Ho (Department of Bio-Environmental Chemistry, College of Agriculture and Life Sciences, Chungnam National University)
저널정보
한국응용생명화학회 Applied Biological Chemistry Applied Biological Chemistry 제56권 제5호
발행연도
2013.1
수록면
505 - 517 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Copper (Cu), a redox-active transition metal, is known to be involved in protein metabolism, photosynthetic and respiratory electron transport, cell wall metabolism, antioxidant activity, nitrogen fixation, ion metabolization, and hormone perception, among others in plants. Though Cu has been listed among the essential elements, it could potentially result in complete inhibition of plant growth and development at excess concentrations. Measures available for alleviating Cu toxicity in plants are discussed in the present paper. Exogenous application of nitric oxide through up-regulating the components of antioxidant defense system [catalase (CAT-EC 1.11.1.6), peroxidase (POD-EC 1.11.1.7), superoxide dismutase (SOD-EC 1.15.1.1), and ascorbate peroxidase (APX-EC 1.11.1.11) activities] and stimulating the enzyme P5CS (D1-pyrroline-5-carboxylate synthetase), which catalyzes proline biosynthesis, has been proved to stand against the adverse impacts of Cu toxicity. Addition of cations (such as $Ca^{2+}$ and $Mg^{2+}$) through stimulating site-specific competition for metal ions could also prevent excess accumulation of Cu in cell interior. Silicon application, through nutrient balancing and physically blocking the apoplastic bypass flow has also been recognized to be effective in alleviating Cu toxicity. Addition of organic amendments and use of arbuscular mycorrhizal fungi as soil inoculants have also proved successful in amelioration of Cu-contaminated soils. Though molecular and physiological mechanisms associated with Cu toxicity have been substantially investigated, information on the regulation of the expression of stress-related genes in key agricultural plant species is still lacking. Additional research efforts focusing at field validation of the toxicity alleviation methods are also equally important.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0