메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Suh, Sang-Ryong (Department of Rural and Biosystems Engineering, Chonnam National University) Lee, Kyeong-Hwan (Department of Rural and Biosystems Engineering, Chonnam National University) Yu, Seung-Hwa (Department of Rural and Biosystems Engineering, Chonnam National University) Shin, Hwa-Sun (Department of Rural and Biosystems Engineering, Chonnam National University) Yoo, Soo-Nam (Department of Rural and Biosystems Engineering, Chonnam National University) Choi, Yong-Soo (Department of Rural and Biosystems Engineering, Chonnam National University)
저널정보
한국농업기계학회 바이오시스템공학(구 한국농업기계학회지) 바이오시스템공학 제37권 제3호
발행연도
2012.1
수록면
177 - 183 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: In near infrared spectroscopy, interactance configuration of a light source and a spectrometer probe can provide more information regarding fruit internal attributes, compared to reflectance and transmittance configuration. However, there is no through study on the parameters of interactance measurement setup. The objective of this study was to investigate the effect of the parameters on the estimation of soluble solids content (SSC) and firmness of muskmelons. Methods: Melon samples were taken from greenhouses at three different harvesting seasons. The prediction models were developed at three distances of 2, 5, and 8 cm between the light source and the spectrometer probe, three measurement points of 2, 3, and 6 evenly distributed on each sample, and different number of fruit samples for calibration models. The performance of the models was compared. Results: In the test at the three distances, the best results were found at a 5 cm distance. The coefficient of determination ($R_{cv}{^2}$) values of the cross-validation were 0.717 (standard error of prediction, SEP=$1.16^{\circ}Brix$) and 0.504 (SEP=4.31 N) for the estimation of SSC and firmness, respectively. The minimum measurement point required to fully represent the spectral characteristics of each fruit sample was 3. The highest $R_{cv}{^2}$ values were 0.736 (SEP=$0.87^{\circ}Brix$) and 0.644 (SEP=4.16 N) for the estimation of SSC and firmness, respectively. The performance of the models began to be saturated when 60 fruit samples were used for developing calibration models. The highest $R_{cv}{^2}$ of 0.713 (SEP=$0.88^{\circ}Brix$) and 0.750 (SEP=3.30 N) for the estimation of SSC and firmness, respectively, were achieved. Conclusions: The performance of the prediction models was quite different according to the condition of interactance measurement setup. In designing a fruit grading machine with interactance configuration, the parameters for interactance measurement setup should be chosen carefully.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0