메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Koh, Doowon (Department of Mathematics Chungbuk National University)
저널정보
충청수학회 충청수학회지 충청수학회지 제28권 제2호
발행연도
2015.1
수록면
251 - 259 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Let $\mathbb{F}^d_q$ be a d-dimensional vector space over a finite field $\mathbb{F}^d_q$ with q elements. We endow the space $\mathbb{F}^d_q$ with a normalized counting measure dx. Let ${\sigma}$ be a normalized surface measure on an algebraic variety V contained in the space ($\mathbb{F}^d_q$, dx). We define the restricted averaging operator AV by $A_Vf(X)=f*{\sigma}(x)$ for $x{\in}V$, where $f:(\mathbb{F}^d_q,dx){\rightarrow}\mathbb{C}$: In this paper, we initially investigate $L^p{\rightarrow}L^r$ estimates of the restricted averaging operator AV. As a main result, we obtain the optimal results on this problem in the case when the varieties V are any nondegenerate algebraic curves in two dimensional vector spaces over finite fields. The Fourier restriction estimates for curves on $\mathbb{F}^2_q$ play a crucial role in proving our results.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0