메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Hansson, Lars-Anders (Lund University, Institute of Ecology/Limnology, Ecology Building) Hylander, Samuel (Lund University, Institute of Ecology/Limnology, Ecology Building)
저널정보
한국광과학회 Photochemical & photobiological sciences : an international journal Photochemical & photobiological sciences : an international journal 제8권 제9호
발행연도
2009.1
수록면
1,266 - 1,275 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this report, we provide a perspective on how zooplankton are able to respond to present and future levels of ultraviolet (UV) radiation, a threat that has been present throughout evolutionary time. To cope with this threat, zooplankton have evolved several adaptations including behavioral responses, repair systems, and accumulation of photoprotective compounds. Common photoprotective compounds include melanins and carotenoids, which are true pigments, but also mycosporine-like amino acids (MAAs) and several other substances, and different taxa use different blends of these compounds. It is not only the level of UV radiation, however, that determines the amount of photoprotective compounds incorporated by the zooplankton, but also other environmental factors, such as predation and supply rate of the compounds. Furthermore, compared to taxa that are less pigmented, those taxa with ample pigmentation are generally less likely to exhibit diel migration. The photoenzymatic repair of UV damages seems to be more efficient at intermediate temperature than at low and high temperatures, suggesting that it is less useful at high and low latitudes, where UV radiation is often extremely high. While predicted future increases in UV radiation are expected to substantially affect many processes, recent studies show that most zooplankton taxa are well adapted to cope with such increases, either by UV avoidance behavior or by incorporation of photoprotective compounds. Hence, we conclude that future increase in UV radiation will have only moderate direct effects on zooplankton biomass and community dynamics.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0