메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Li, Han (Department of Civil Engineering, The Tongji University) Zhang, Qi-Lin (Department of Civil Engineering, The Tongji University) Yang, Bin (Department of Civil Engineering, The Tongji University) Lu, Jia (Department of Civil Engineering, The Tongji University) Hu, Jia (Department of Civil Engineering, The Tongji University)
저널정보
테크노프레스 Smart structures and systems Smart structures and systems 제15권 제4호
발행연도
2015.1
수록면
1,019 - 1,039 (21page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Shanghai Tower is a composite structure building with a height of 632 m. In order to verify the structural properties and behaviors in construction and operation, a structural health monitoring project was conducted by Tongji University. The monitoring system includes sensor system, data acquisition system and a monitoring software system. Focusing on the health monitoring in construction, this paper introduced the monitoring parameters in construction, the data acquisition strategy and an integration structural health monitoring (SHM) software. The integration software - Structural Monitoring/ Analysis/ Evaluation System (SMAE) is designed based on integration and modular design idea, which includes on-line data acquisition, finite elements and dynamic property analysis functions. With the integration and modular design idea, this SHM system can realize the data exchange and results comparison from on-site monitoring and FEM effectively. The analysis of the monitoring data collected during the process of construction shows that the system works stably, realize data acquirement and analysis effectively, and also provides measured basis for understanding the structural state of the construction. Meanwhile, references are provided for the future automates construction monitoring and implementation of high-rise building structures.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0