메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이선희 (동아대학교 패션디자인학과)
저널정보
한국섬유공학회 한국섬유공학회지 한국섬유공학회지 제56권 제1호
발행연도
2019.1
수록면
8 - 14 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The objective of this study was to develop lace-style 3D printed textiles using thermoplastic polyurethane filaments for 3D printing by fused deposition modeling. Composite voile textiles with lace motifs of different sizes were produced by various roller press processes. The textiles were characterized according to their tensile behaviors, tensile characteristics, and stiffnesses. The analysis of tensile characteristics revealed that the 3dLaceM1 textile with a big pattern had a maximum load of 13.2 kgf and an elongation of 274.3%. Moreover, as the size of the lace motif decreased, the maximum load value tended to decrease, while the elongation value tended to increase. The composite 3D-printed lace/voile textile (3dLaceM1/voile), which was produced by a roller press, had a maximum load of 35.4 kgf and an elongation of 383.9%. The initial modulus of 3dLaceM1/voile was $20.56kgf/mm^2$, which was more than six times that of the 3D-printed lace textile that was produced by the roller press process. The stiffness of the 3D-printed lace textile tended to decrease with the size of the lace motif. In addition, the 3D-printed lace that was produced with the roller press process exhibited more flexible characteristics. Furthermore, the stiffness of the composite 3D-printed lace/voile textile was higher than that of the conventional 3D-printed lace textile. Thus, the tensile characteristics and stiffnesses of textiles could be customized for specific uses through process control of the 3D-printed lace.

목차

등록된 정보가 없습니다.

참고문헌 (8)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0