메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
사공운 (영남대학교 컴퓨터공학과)
저널정보
디지털산업정보학회 디지털산업정보학회논문지 디지털산업정보학회논문지 제12권 제1호
발행연도
2016.1
수록면
1 - 12 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The current economic crisis is making new demands on manufacturing industry, in particular, in terms of the flexibility and efficiency of production processes. This requires production and administrative processes to be meshed with each other by means of IT systems to optimise the use and capacity utilisation of machines and lines but also to be able to respond rapidly to wrong developments in production and thus to minimise adverse impacts on the business. The future scenario of the "smart factory" represents the zenith of this development. The factory can be modified and expanded at will, combines all components from different manufacturers and enables them to take on context-related tasks autonomously. Integrated user interfaces will still be required at most for basic functionalities. The complex control operations will run wirelessly and ad hoc via mobile terminals such as PDAs or smartphones. The comnination of IoT, and Big Data optimisation is bringing about huge opportunities. these processes are not just limited to manufacturing, anywhere a supply chain environment exists can benefit from information provided by linked devices and access to big data to inform their decision support. Building a smart factory with smart assets at its core means reaching those desired new levels of productivity and efficiency. It means smart products that leverage advanced traceability, connectivity and intelligence. For businesses, it means being able to address the talent crunch through more autonomous. In a Smart Factory, machinery and equipment will have the ability to improve processes through self-optimization and autonomous decision-making.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0