메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
박상무 (울산대학교 전기공학부) 강만모 (울산대학교 전기공학부) 엄성훈 (영산대학교 자유전공학부)
저널정보
한국인터넷방송통신학회 한국인터넷방송통신학회 논문지 한국인터넷방송통신학회 논문지 제12권 제3호
발행연도
2012.1
수록면
201 - 207 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
RAM 기반 신경망은 2진 신경망(Binary Neural Network, BNN)에 복수개의 정보 저장 비트를 두어 교육의 반복 횟수를 누적하도록 구성된 가중치를 가지지 않는(weightless) 신경회로망으로서 한 번의 교육만으로 학습이 이루어지는 효율성이 뛰어난 신경회로망이다. 지도 학습에 기반을 둔 RAM 기반 신경망은 패턴 인식 분야에는 우수한 성능을 보이는 반면, 비지도 학습에 의해 패턴을 구분해야 하는 범주화 연구에는 적합하지 않은 모델로 분류된다. 본 논문에서는 비지도 학습 알고리즘을 제안하여 RAM 기반 신경망으로 패턴 범주화를 수행한다. 제안된 비지도 학습 알고리즘에 의해 RAM 기반 신경망은 입력 패턴에 따라 자율 학습하여 스스로 범주를 생성할 수 있으며, 이를 통해 RAM 기반 신경망이 지도 학습과 비지도 학습이 모두 가능한 복합 모델임을 증명한다. 실험에 사용한 학습 패턴으로는 0에서 9까지의 오프라인 필기체 숫자로 구성된 MNIST 데이터베이스를 사용하였다.

목차

등록된 정보가 없습니다.

참고문헌 (10)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0