메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이아람 (서울시립대학교 전자전기컴퓨터공학부) 김한준 (서울시립대학교 전자전기컴퓨터공학부) 현만 (서울시립대학교 전자전기컴퓨터공학부)
저널정보
한국인터넷방송통신학회 한국인터넷방송통신학회 논문지 한국인터넷방송통신학회 논문지 제13권 제4호
발행연도
2013.1
수록면
141 - 148 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
기계학습을 이용한 자동분류시스템은 학습과정을 통해 분류모델을 구축하고 이를 기반으로 미분류 데이터를 특정 카테고리로 분류한다. 기계학습 기반 자동분류 시스템의 성능은 분류모델의 구성 인자인 특징의 품질에 크게 의존한다. 문서 데이터의 경우 특징 집합을 생성하기 위해 문서내의 출현단어와 문서의 구조적 정보를 활용한다. 특히 웹문서로부터 특징을 추출하기 위해 단어뿐만 아니라 태그, 하이퍼링크 정보를 분석할 수 있다. 최근 웹문서의 분류 기법에 대한 연구는 기계학습 알고리즘보다 특징 생성 및 가공 기술에 초점을 맞추고 있다. 이에 본 논문은 웹문서의 분류모델을 개선하기 위해 단어, 태그, 하이퍼링크 정보로부터 고품질의 특징을 선별 추출하여 가중치를 자동으로 부여하는 기법을 제안한다. Web-KB 문서집합을 이용한 다양한 실험을 통해 제안 기법의 우수성을 보인다.

목차

등록된 정보가 없습니다.

참고문헌 (12)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0