메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Hwang, Jinny (Department of Health & Exercise Science, Korea National Sport University) Kim, Jinhae (Korea National Sport University, Physical Education) Kim, Hyeyoung (Korea National Sport University, Division of Liberal Arts and Science) Moon, Jeheon (Department of Sports Science, Korea Institute of Sport Science) Lee, Jusung (Department of Sport Science, Kangwon National University) Kim, Jinhyeok (Department of Industrial & Systems Engineering, Korea Advanced Institute of Science and Technology)
저널정보
한국운동역학회 한국운동역학회지 한국운동역학회지 제29권 제1호
발행연도
2019.1
수록면
1 - 8 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objective: The purpose of this study was to confirm that the cross-country ski sprint course in PyeongChang, where the 2018 Winter Olympics course was to utilize wearable devices equipped with inertial measurement unit (IMU), global positioning system (GPS) and heart rates sensor. Method: For the data collection, two national level cross-country (XC) skiers performed classic technique on the entire sprint course. We analyzed cycle characteristics, range of motion on double poling (DP) technique, average velocity, and displacement of 3 points according to the terrain. Results: The absolute cycle time gradually decreased during starting, middle and finish sections. While the length of the DP increased and the heart rates tended to increase for men skier. In addition, the results indicated that range of motion of knee joint during starting and finish section decreased more than middle section. The errors of latitude and longitude data collected through GPS were within 3 m from 3 points. Conclusion: Through the first case study in Korea, which analyzed the location and condition of XC skiers in the entire sprint course in real time, confirmed that feedback was available in the field using various wearable sensors.

목차

등록된 정보가 없습니다.

참고문헌 (25)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0