메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
조승주 (조선대학교 의과대학)
저널정보
조선대학교 기초과학연구원 조선자연과학논문집 조선자연과학논문집 제3권 제3호
발행연도
2010.1
수록면
143 - 147 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Since it is of great importance to know how a ligand binds to a receptor, there have been a lot of efforts to improve the quality of prediction of docking poses. Earlier efforts were focused on improving search algorithm and scoring function in a docking program resulting in a partial improvement with a lot of variations. Although these are basically very important and essential, more tangible improvements came from the reduction of search space. In a normal docking study, the approximate active site is assumed to be known. After defining active site, scoring functions and search algorithms are used to locate the expected binding pose within this search space. A good search algorithm will sample wisely toward the correct binding pose. By careful study of receptor structure, it was possible to prioritize sub-space in the active site using "receptor-based pharmacophores" or "hot spots". In a sense, these techniques reduce the search space from the beginning. Further improvements were made when the bound ligand structure is available, i.e., the searching could be directed by molecular similarity using ligand information. This could be very helpful to increase the accuracy of binding pose. In addition, if the biological activity data is available, docking program could be improved to the level of being useful in affinity prediction for a series of congeneric ligands. Since the number of co-crystal structures is increasing in protein databank, "Ligand-Guided Docking" to reduce the search space would be more important to improve the accuracy of docking pose prediction and the efficiency of virtual screening. Further improvements in this area would be useful to produce more reliable docking programs.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0