메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이승묵 (School of Advanced Materials Science and Engineering, Sungkyunkwan University) 황수민 (School of Advanced Materials Science and Engineering, Sungkyunkwan University) 이창민 (School of Advanced Materials Science and Engineering, Sungkyunkwan University) 주진호 (School of Advanced Materials Science and Engineering, Sungkyunkwan University) 김찬중 (Neutron Science Division, Korea Atomic Energy Research Institute)
저널정보
한국초전도학회 Progress in superconductivity Progress in superconductivity 제11권 제2호
발행연도
2010.1
수록면
87 - 91 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
We fabricated the polyacrylic acid (PAA)-doped $MgB_2$ bulks and characterized their lattice parameters, actual C substitutions, microstructures, and critical properties. The boron (B) powder was mixed with PAA using N,N-dimethylformamide as solvent and then the solution was dried out at $200^{\circ}C$ and crushed. The C treated B powder and magnesium powder were mixed and compacted by uniaxial pressing at 500 MPa, followed by sintering at $900^{\circ}C$ for 1 h in high purity Ar atmosphere. We observed that the PAA doping increased the MgO amount but decreased the grain size, a-axis lattice constant, and critical temperature ($T_c$), which is indicative of the C substitution for B sites in $MgB_2$. In addition, the critical current density ($J_c$) at high magnetic field was significantly improved with increasing PAA addition: at 5 K and 6.6 T, the $J_c$ of 7 wt% PAA-doped sample was $6.39\;{\times}\;10^3\;A/cm^2$ which was approximately 6-fold higher than that of the pure sample ($1.04\;{\times}\;10^3\;A/cm^2$). This improvement was probably due to the C substitution and the refinement of grain size by PAA doping, suggesting that PAA is an effective dopant in improving $J_c$(B) performance of $MgB_2$.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0