메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
신동하 (가천대학교 에너지 IT학과) 김창복 (가천대학교 에너지 IT학과)
저널정보
한국항행학회 한국항행학회논문지 한국항행학회논문지 제22권 제3호
발행연도
2018.1
수록면
233 - 239 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
태양광 발전은 기상 상태에 따라 간헐적이기 때문에 태양광 발전의 효율과 경제성 향상을 위해 정확한 발전량 예측이 요구된다. 본 연구는 목포 기상대에서 예보하는 기상 데이터와 영암 태양광 발전소의 발전량 데이터를 이용하여 태양광 발전량 단기 딥러닝 예측모델을 제안하였다. 기상청은 기온, 강수량, 풍향, 풍속, 습도, 운량 등의 기상요소를 3일간 예보한다. 그러나 태양광 발전량 예측에 가장 중요한 기상요소인 일조 및 일사 일사량 예보하지 않는다. 제안 모델은 예보 기상요소를 이용하여, 일조 및 일사 일사량을 예측 하였다. 또한 발전량은 기상요소에 예측된 일조 및 일사 기상요소를 추가하여 예측하였다. 제안 모델의 발전량 예측 결과 DNN의 평균 RMSE와 MAE는 0.177과 0.095이며, RNN은 0.116과 0.067이다. 또한, LSTM은 가장 좋은 결과인 0.100과 0.054이다. 향후 본 연구는 다양한 입력요소의 결합으로 보다 향상된 예측결과를 도출할 수 있을 것으로 기대된다.

목차

등록된 정보가 없습니다.

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0