메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
전지홍 (안동대학교 환경공학과) 최동혁 (안동대학교 환경공학과) 김재권 (한국환경공단) 김태동 (안동대학교 환경공학과)
저널정보
한국물환경학회 한국물환경학회지 한국물환경학회지 제33권 제6호
발행연도
2017.1
수록면
744 - 753 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The sediment delivery ratio (SDR) is widely used to estimate sediment loads by multiplying soil loss through the Revised Universal Equation (RUSLE). In this study, the SDR equation was developed for the Lake Imha watershed using soil loss calculated by RUSLE and sediment loads by the calibrated Hydrological Simulation. Program Fortran (HSPF). The ratio of watershed relief and channel length ($R_f/L_{ch}$), the ratio of watershed relief and watershed length ($R_f/L_b$), curve number (CN), area (A), and channel slope ($SLP_{ch}$) demonstrated strong correlations with SDR. SDR equations were developed by a combination of subwatershed parameters by referring to the correlation analysis. The area based power functional SDR developed in this study showed significant errors at the point right after entering major tributaries, because SDR was unrealistically reduced when the watershed area increased significantly. The $SLP_{ch}$-based power functional SDR also showed extraordinary values when the channel slope was gradual. The SDR equation that showed the highest value of the coefficient of determination also presented unrealistic changes in the sediment loads within a relatively short river distance. The SDR equation $SDR=0.0003A^{0.198}R_f/L{_w}^{1.167}$ was recommended for application to the Lake Imha watershed. Using this equation, sediment loads at the outlet of the Lake Imha watershed were calculated, and the HSPF parameters related to sediment in the uncalibrated subwatersheds were determined by referring to the sediment loads calculated with the SDR equation.

목차

등록된 정보가 없습니다.

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0