메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
정종혁 (서울시립대학교 기계정보공학과) 정하규 (서울시립대학교 기계정보공학과) 권원태 (서울시립대학교 기계정보공학과)
저널정보
한국물환경학회 수질보전 수질보전 제24권 제1호
발행연도
2008.1
수록면
1 - 6 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Biological and chemical sensors are the two most frequently used sensors to monitor the water resource. Chemical sensor is very accurate to pick up the types and to measure the concentration of the chemical substance. Drawback is that it works for just one type of chemical substance. Therefore a lot of expensive monitoring system needs to be installed to determine the safeness of the water, which costs too much expense. Biological sensor, on the contrary, can judge the degree of pollution of the water with just one monitoring system. However, it is not easy to figure out the type of contaminant with a biological sensor. In this study, an endeavor is made to identify the toxicant in the water using the shape of the chlorophyll fluorescence induction curve (FIC) from a biological monitoring system. Wem-tox values are calculated from the amount of flourescence of contaminated and reference water. Curve fitting is executed to find the representative curve of the raw data of Wem-tox values. Then the curves are digitalized at the same interval to train the neural network model. Taguchi method is used to optimize the neural network model parameters. The optimized model shows a good capacity to figure out the toxicant from FIC.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0