메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
박재홍 (국립환경과학원 수질총량관리센터/영산강유역환경청 측정분석과) 박준대 (국립환경과학원 수질총량연구과) 류덕희 (국립환경과학원 수질총량연구과) 정동일 (국립환경과학원 물환경연구부)
저널정보
한국물환경학회 수질보전 수질보전 제25권 제4호
발행연도
2009.1
수록면
481 - 493 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study was conducted to performance appraisal of Total Maximum Daily Loads (TMDLs), especially in terms of performance on development & reduction plan and water quality status of unit watershed. Because load allocations for pollution sources were predicted redundantly by uncertainty of prediction, TMDLs master plan has been frequently changed to acquire load allocation for local development. Therefore, It need to be developed more resonable prediction techniques of water pollution sources to preventing the frequent change. It is suggested that the reduction amount have to be distributed properly during the planning period. In other words, it has not to be concentrated on the specific year (especially final year of the planning period). The reason why, if the reduction amount concentrate on the final year of the planning period, allotment loading amount could not be achieved in some cases (e.g., insufficiency of budget, extension of construction duration). If the development plan was developed including uncertain developments, it is necessary to be developed reduction plan considered with them. However, some of the plans in the reduction plan could not be accomplished in some case. Because, it is not considered financial abilities of local governments. Consequently, development plan must be accomplished to avoid uncertain developments, and to consider financial assistance to support the implementation of effective plan. Water quality has been improved in many unit watersheds due to the TMDLs, especially in geum river and yeongsang/seomjin river.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0