메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김문일 (고려대학교 환경생태공학과) 이우균 (고려대학교 환경생태공학과) 권태협 (고려대학교 환경생태공학과) 곽두안 (고려대학교 환경생태공학과) 김유승 ([주]선도소프트) 이승호 (국립산림과학원)
저널정보
한국산림과학회(구 한국임학회) 한국산림과학회지 한국산림과학회지 제100권 제3호
발행연도
2011.1
수록면
374 - 381 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구에서는 지상형 원격탐사장비인 ADC(Agricultural Digital Camera)를 통해 획득한 영상으로부터 NDVI(Normalized Difference Vegetation Index) 값을 산출하여 소나무 재선충병 감염목의 조기감별에 대한 가능성을 알아보고자 하였다. 재선충에 감염된 임목의 잎은 시들음 현상을 보이게 되고, 이것은 NDVI의 감소를 유발하므로, 정상목과 감염목은 시기에 따라 NDVI 변화양상이 다르게 나타난다. 이러한 현상에 착안하여, 시기에 따라 임목의 NDVI 값의 변화량을 보여주는 DI(Detection Index)를 고안하여 감염목의 판별에 사용하였다. 2007년 5월부터 8월까지의 획득된 영상으로부터 감염목과 정상목의 DI 값을 산출한 후, GLM(General Linear Models)을 이용하여 분석한 결과 6~8월 DI 값이 가장 낮은 유의수준(0.0001)에서 두 집단 간에 차이를 보였다. 6~8월 DI 값으로 감염목과 정상목의 집단 간의 차이를 판별분석(Discriminant Analysis)한 결과, DI 값을 통한 감염목과 정상목의 분류정확도(Hit Ratio)는 71.9%였고, 잭나이프(Jack-knife) 추정방법을 사용했을 때는 73.5%의 정확도를 얻었다. 위의 결과를 통해 DI는 감염목과 정상목을 판별하는데 유용한 지수라고 판단되고, 재선충병에 의한 피해를 방지하는데 도움을 줄 수 있을 것이라 사료된다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0