메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
손수원 (Department of Electronic Engineering Korea University) 노진상 (Department of Electronic Engineering Korea University) 김성수 (Samsung Electronics) 이재원 (Samsung Electronics) 고한석 (Department of Electronic Engineering Korea University)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제34권 제2호
발행연도
2015.1
수록면
171 - 176 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 Hidden Markov Model(HMM) - Universal Background Model(UBM)의 주 상태 정보 기반의 i-vector 추출 기술을 제안한다. Ergodic HMM이 UBM을 추정하는데 쓰였으며, 이를 통해 동일 화자 음성에도 다양하게 존재하는 특성을 HMM states로 분류할 수 있다. 제안한 방법을 이용하면 HMM의 state 개수에 따라 i-vector 들이 추출되는데, 주 상태 정보 방법을 통해 이들 중 하나를 선택한다. 제안한 방법을 검증하기 위해 National Institute of Standards and Technology(NIST) Speaker Recognition Evaluation(SRE) database를 이용하여 실험을 하였으며, Equal Error Rate(EER) 성능 수치에서 12 %의 성능 향상을 확인할 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0