메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Kwon, Young-Don (School of Chemical Engineering, Sungkyunkwan University) Park, Kwang-Sun (School of Chemical Engineering, Sungkyunkwan University)
저널정보
한국유변학회 Korea-Australia rheology journal Korea-Australia rheology journal 제24권 제1호
발행연도
2012.1
수록면
53 - 63 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In the framework of finite element analysis we propose fast and robust time integration scheme for viscoelastic fluid (the Oldroyd-B and Leonov models) flow by way of efficient decoupling of equations. Developed algorithms of the $1^{st}$ and $2^{nd}$ order are shown to disclose convergence characteristics equivalent to conventional methods of corresponding order when applied to 1D poiseuille and 2D creeping contraction flow problems. In comparison with fully coupled implicit technique, they notably enhance the computation speed. For the time dependent flow modeling with pressure difference imposed slightly below the steady limit, current as well as conventional approximation scheme has demonstrated fluctuating solution without approaching the steady state. From the result, we may conclude that the existence of upper limit for convergent steady solution implies flow transition to highly elastic time-fluctuating field without steady asymptotic. It is presumably associated with some real unstable elastic flow like re-entrant vortex oscillation and extrudate distortion outside the channel outlet.

목차

등록된 정보가 없습니다.

참고문헌 (28)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0