메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
서영찬 (한양대학교 교통물류공학과) 권상현 (한국도로공사 대관령지사 도로안전팀) 정동혁 (한양대학교 교통물류공학과) 정진훈 (인하대학교 토목공학과) 강민수 (한국도로공사 인사처)
저널정보
한국도로학회 한국도로학회논문집 한국도로학회논문집 제19권 제6호
발행연도
2017.1
수록면
83 - 95 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
PURPOSES : The purpose of this study is to develop a regression model to predict the International Roughness Index(IRI) and Surface Distress(SD) for the estimation of HPCI using Expressway Pavement Management System(PMS). METHODS : To develop an HPCI prediction model, prediction models of IRI and SD were developed in advance. The independent variables considered in the models were pavement age, Annual Average Daily Traffic Volume(AADT), the amount of deicing salt used, the severity of Alkali Silica Reaction(ASR), average temperature, annual temperature difference, number of days of precipitation, number of days of snowfall, number of days below zero temperature, and so on. RESULTS : The present IRI, age, AADT, annual temperature differential, number of days of precipitation and ASR severity were chosen as independent variables for the IRI prediction model. In addition, the present IRI, present SD, amount of deicing chemical used, and annual temperature differential were chosen as independent variables for the SD prediction model. CONCLUSIONS : The models for predicting IRI and SD were developed. The predicted HPCI can be calculated from the HPCI equation using the predicted IRI and SD.

목차

등록된 정보가 없습니다.

참고문헌 (3)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0