메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
구본상 (서울과학기술대학교 건설시스템공학과) 신병진 (Department of Civil Engineering, Seoul National University of Science and Technology)
저널정보
한국건설관리학회 한국건설관리학회논문집 한국건설관리학회논문집 제18권 제6호
발행연도
2017.1
수록면
78 - 88 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
건설사업의 생애주기 단계별로 BIM의 활용도가 다양해지면서 이를 위한 전문화된 소프트웨어가 증가하고 있다. 이들 소프트웨어 간 BIM 정보 교환 시 상호호환성이 중요하며, 이때 국제표준 포맷인 IFC 데이터 모델을 채택하고 있다. 그러나 BIM 데이터를 IFC로 변환하기 위해서는 개별 객체에 IFC 클래스를 매핑해야 하는데, 현재까지 본 작업은 수동 작업으로 이뤄지고 있어, 매핑 상의 오류나 누락이 발생하게 된다. 본 연구에서는 BIM 객체 및 IFC 클래스 간 매핑의 무결성 검증을 위해 이상탐지분석 기법 중 하나인 Novelty detection을 적용하였다. 동일한 IFC 클래스의 객체들은 기하형상이 유사하다는 전제하에. 매핑이 잘못된 객체를 이상치로 판별하고자 하는 것이다. 3개의 BIM모델로부터 IFC 클래스별로 객체를 분류한 후 이 중 2개의 IFC 클래스(벽체 및 문)에 대해 one-class SVM을 학습시키고 검증하였다. 분석한 결과 총 160개의 이상치 중 141개를 정확하게 분류하여 이상치 판별능력이 높게 나왔다. Novelty detection 기법은 다중 경계면을 형성하고 사전적 학습이 가능하다는 점에서 높은 예측력을 발휘하여, 기존 방식이나 타 알고리즘보다 매핑 오류를 검증하는데 더 적합한 방법인 것으로 확인되었다.

목차

등록된 정보가 없습니다.

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0