메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Chang, Yuan-Chin Ivan (Institute of Statistical Science, Academia Sinica) Park, Eunsik (Department of Statistics, Chonnam National University)
저널정보
한국통계학회 JKSS(Journal of the Korean Statistical Society) Journal of the Korean Statistical Society 제42권 제1호
발행연도
2013.1
수록면
105 - 116 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In clinical trials, a covariate-adjusted response-adaptive (CARA) design allows a subject newly entering a trial a better chance of being allocated to a superior treatment regimen based on cumulative information from previous subjects, and adjusts the allocation according to individual covariate information. Since this design allocates subjects sequentially, it is natural to apply a sequential method for estimating the treatment effect in order to make the data analysis more efficient. In this paper, we study the sequential estimation of treatment effect for a general CARA design. A stopping criterion is proposed such that the estimates satisfy a prescribed precision when the sampling is stopped. The properties of estimates and stopping time are obtained under the proposed stopping rule. In addition, we show that the asymptotic properties of the allocation function, under the proposed stopping rule, are the same as those obtained in the non-sequential/fixed sample size counterpart. We then illustrate the performance of the proposed procedure with some simulation results using logistic models. The properties, such as the coverage probability of treatment effect, correct allocation proportion and average sample size, for diverse combinations of initial sample sizes and tuning parameters in the utility function are discussed.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0