메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Kim, Ji Young (Department of Applied Statistics, Yonsei University) Kim, Jae Kwang (Department of Statistics, Iowa State University)
저널정보
한국통계학회 JKSS(Journal of the Korean Statistical Society) Journal of the Korean Statistical Society 제41권 제3호
발행연도
2012.1
수록면
291 - 303 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Parameter estimation with missing data is a frequently encountered problem in statistics. Imputation is often used to facilitate the parameter estimation by simply applying the complete-sample estimators to the imputed dataset. In this article, we consider the problem of parameter estimation with nonignorable missing data using the approach of parametric fractional imputation proposed by Kim (2011). Using the fractional weights, the E-step of the EM algorithm can be approximated by the weighted mean of the imputed data likelihood where the fractional weights are computed from the current value of the parameter estimates. Calibration fractional imputation is also considered as a way for improving the Monte Carlo approximation in the fractional imputation. Variance estimation is also discussed. Results from two simulation studies are presented to compare the proposed method with the existing methods. A real data example from the Korea Labor and Income Panel Survey (KLIPS) is also presented.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0