메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
문희원 (성균관대학교 건설환경시스템공학과) 백종진 (성균관대학교 건설환경시스템공학과) 황석환 (한국건설기술연구원 수자원연구실) 최민하 (성균관대학교 수자원대학원 수자원학과)
저널정보
한국수자원학회 한국수자원학회논문집 한국수자원학회논문집 제47권 제11호
발행연도
2014.1
수록면
1,095 - 1,105 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 연구에서는 Tropical Rainfall Measuring Mission (TRMM) 3B43 V7 (25 km)의 월 누적 격자 강우량을 1 km 해상도로 상세화하기 위해 Support Vector Machine (SVM) 회귀를 활용한 상세화 기법을 제안하였다. 비선형 예측모델인 SVM은 상세화의 기반이 되는 다양한 수문기상인자와 강우 발생간의 월별 상관성 구축에 효율적으로 활용되었다. 상세화된 격자 강우는 전국에 고루 분포한 64개 지점 관측 강우와의 비교 분석을 통해 상세화 이전의 격자 강우 보다 다소 개선된 정확도를 지니는 것으로 확인되었다. 특히, 상세화 이전 격자 강우가 지니는 양의 Bias가 효과적으로 개선되었다. 상세화 전후의 공간분포 비교에서 두 분포는 평균적으로 유사했으나, 상세화 이전 강우의 공간분포에서 나타나지 않았던 강우의 국지적 특성이 상세화된 공간분포를 통해 잘 표현되는 것을 확인할 수 있었다. 특히, 일부 지점의 과소 및 과대산정이 상세화를 통해 개선되어 전반적인 정확도 향상에 기여하였음을 확인했다. 본 연구에서 제안된 상세화 기법이 적용된 격자 강우는 모델의 정확도 향상을 위한 고해상도 입력자료로 활용될 수 있으며, 추후 연구에서는 SVM 외에 다른 회귀 방식을 활용하여 최적의 강우 상세화 기법 개발에 기여할 수 있을 것으로 보인다.

목차

등록된 정보가 없습니다.

참고문헌 (33)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0