메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
신승수 (광운대학교 전자융합공학과) 김형국 (광운대학교 전자융합공학과)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제38권 제5호
발행연도
2019.1
수록면
574 - 579 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
코골이는 전형적인 수면장애 증상이며 수면 무호흡증을 유발하기 때문에 코골이의 발생을 확인하는 것이 중요하다. 이에 본 논문에서는 효율적인 코골이 식별 알고리즘으로 잔류 합성 곱 신경망을 제안한다. 잔류 학습과 합성곱 신경망을 결합한 구조인 잔류 합성 곱 신경망은 기존의 신경망보다 데이터에 존재하는 특징을 효과적으로 추출하여 코골이 식별 정확도를 향상한다. 실험 결과는 제안한 코골이 식별 알고리즘의 성능이 기존 방식보다 더 우수하다는 것을 보여준다.

목차

등록된 정보가 없습니다.

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0