메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
조훈영 (한국전자통신연구원 소프트웨어연구부문 음성언어정보연구부) 김상훈 (한국전자통신연구원 소프트웨어연구부문 음성언어정보연구부)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제29권 제1호
발행연도
2010.1
수록면
56 - 61 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 HMM 기반의 연속음성인식에서 음향모델의 최적화 기법을 논한다. 대부분의 음성인식 시스템에서 HMM 상태별로 동일한 개수의 가우시안 성분 (mixture component)을 사용해 왔다. 그러나, 음향 모델링에 사용되는 데이터 샘플의 개수는 HMM상태별로 다르므로 이에 따른 최적화를 수행할 경우 모델 파라미터의 개수를 효과적으로 줄일 수 있을 뿐 아니라, 디코딩 단계에서 음성인식기의 속도 및 인식 성능 개선이 기대된다. 본 연구에서 제안한 방법은 기존에 알려진 MDL (minimum description length) 기반의 음향모델 최적화 방법에서 가우시안 성분들의 통합과정에 가우시안 성분의 가중치 정보 (mixture weight)를 반영하도록 개선하였다. 인식 실험 결과, 제안한 방법은 가우시안 성분의 가중치를 반영하지 않는 기존 방법에 비해 향상된 최적화 성능을 보임을 확인할 수 있었다.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0