메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
양일호 (서울시립대학교 컴퓨터과학부) 김민석 (LG 전자기술원) 소병민 (서울시립대학교 컴퓨터과학부) 김명재 (서울시립대학교 컴퓨터과학부) 유하진 (서울시립대학교 컴퓨터과학부)
저널정보
한국음향학회 한국음향학회지 한국음향학회지 제31권 제3호
발행연도
2012.1
수록면
188 - 196 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 커널 주성분 분석 (KPCA, kernel principal component analysis)으로 강화한 화자 특징을 이용하여 복수의 분류기를 학습하고 이를 앙상블 결합하는 화자 식별 방법을 제안한다. 이 때, 계산량과 메모리 요구량을 줄이기 위해 전체 화자 특징 벡터 중 일부를 랜덤 선택하여 커널 주성분 분석의 기저를 추정한다. 실험 결과, 제안한 방법이 그리디 커널 주성분 분석 (GKPCA, greedy kernel principal component analysis)보다 높은 화자 식별률을 보였다.

목차

등록된 정보가 없습니다.

참고문헌 (9)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0