메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Kumar, Shobhit (Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology) Gupta, Satish Kumar (Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology)
저널정보
대한약학회 Archives of pharmacal research : a publication of the Pharmaceutical Society of Korea Archives of pharmacal research : a publication of the Pharmaceutical Society of Korea 제37권 제3호
발행연도
2014.1
수록면
340 - 351 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The aim of present study was to enhance the dissolution rate of poorly water-soluble drug aceclofenac by solid dispersion technique using corn starch, dicalcium phosphate, lactose, and microcrystalline cellulose as carriers. Solid dispersions were prepared by solvent wetting method using $3^2$ full factorial design for each of the carrier. The prepared solid dispersions were evaluated for differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy (FTIR), and angle of repose. In vitro dissolution studies were carried out in phosphate buffer (pH 7.5) and 0.1 N HCl (pH 1.2). The results of solid state characterization bring to view that in solid dispersions the crystalline drug gets converted to its amorphous form. FTIR study results indicated the absence of interaction between aceclofenac and carriers. For prepared solid dispersions, angle of repose was found to be in the range of $26.19^{\circ}$ to $35.29^{\circ}$, which indicates good flowability. Enhanced drug dissolution was obtained with carrier in order lactose> corn starch > microcrystalline cellulose > dicalcium phosphate. Hence, these carriers could be used to enhance the dissolution rate of poorly water-soluble drug.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0