메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김경훈 (건강보험심사평가원)
저널정보
한국보건행정학회 보건행정학회지 보건행정학회지 제26권 제1호
발행연도
2016.1
수록면
71 - 78 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The value of using health insurance claim database is continuously rising in healthcare research. In studies where comorbidities act as a confounder, comorbidity adjustment holds importance. Yet researchers are faced with a myriad of options without sufficient information on how to appropriately adjust comorbidity. The purpose of this study is to assist in selecting an appropriate index, look back period, and data range for comorbidity adjustment. No consensus has been formed regarding the appropriate index, look back period and data range in comorbidity adjustment. This study recommends the Charlson comorbidity index be selected when predicting the outcome such as mortality, and the Elixhauser's comorbidity measures be selected when analyzing the relations between various comorbidities and outcomes. A longer look back period and inclusion of all diagnoses of both inpatient and outpatient data led to increased prevalence of comorbidities, but contributed little to model performance. Limited data range, such as the inclusion of primary diagnoses only, may complement limitations of the health insurance claim database, but could miss important comorbidities. This study suggests that all diagnoses of both inpatients and outpatients data, excluding rule-out diagnosis, be observed for at least 1 year look back period prior to the index date. The comorbidity index, look back period, and data range must be considered for comorbidity adjustment. To provide better guidance to researchers, follow-up studies should be conducted using the three factors based on specific diseases and surgeries.

목차

등록된 정보가 없습니다.

참고문헌 (50)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0