메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Lee, Sangman (Division of Applied Biology and Chemistry, School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University)
저널정보
한국응용생명화학회 Applied Biological Chemistry Applied Biological Chemistry 제57권 제5호
발행연도
2014.1
수록면
545 - 549 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Bioremediation of heavy metals by using microorganisms is an effective strategy in regions that have low and wide-ranging metal concentrations and in situations where physical and chemical techniques are not suitable. Because of their higher capacity to remove a wide range of metals by biosorption, yeasts are useful for the bioremediation of heavy metals. In this study, identification of yeast mutants (CdRs) was focused, which have strong resistance to cadmium (Cd), a representative heavy metal. Yeast cells were sequentially adapted to gradually increasing the Cd concentration up to 30 mM. The resultant mutant, CdR30 cells survived a final Cd concentration of 30 mM, while the control cells failed to survive at 0.5 mM in 7 d. It was analyzed whether the increased Cd tolerance of the mutants was associated with sensitivity toward other metals. Compared to control cells, CdR20 cells showed increased tolerance to Cu, decreased tolerance to Ni, and comparable tolerance to Zn. However, these tolerances were not reproducible, because CdRs isolated in a second round of induction showed different metal sensitivities. The increase in Ni sensitivity in CdR20 cells was overcome by performing a second adaptation to Ni stress. Thus, CdR20 cells that were tolerant to both Cd and Ni were generated. These data presented in this study may be useful for the application of microorganisms to the bioremediation of heavy metals.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0