메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이준행 (남부대학교 방사선학과) 이흥만 (남부대학교 방사선학과) 김태식 (한국국제대학교 제약공학부) 이상복 (남부대학교 방사선학과)
저널정보
한국방사선학회 한국방사선학회 논문지 한국방사선학회 논문지 제3권 제1호
발행연도
2009.1
수록면
29 - 39 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 신경회로망을 이용한 의료영상의 질환부위 인식방법을 제안하였다. 질환부위 인식을 위한 신경회로망은 입력층, 은닉층, 출력층으로 구성하여 적응 오차 역전파 알고리즘으로 학습하였다. 신경회로망에 입력된 의료영상의 특징 파라미터는 웨이브릿 변환에 의하여 분해된 저주파 영역을 행렬식으로 표현하여 특성 다항식의 계수값(n+1)개로 하였다. 추출된 특징 파라미터는 탄젠트시그모이드 전달함수의 범위로 정규화하여 신경회로망의 입력 벡터로 이용하였다. 제안된 방법의 타당성을 입증하기 위해서 실험에 사용된 입력 의료영상을 가지고 모사실험을 통해 질환부위의 인식률을 평가하였다. 실험 결과 4레벨 DWT로 변환된 저주파영역 행렬의 특성 다항식 계수를 탄젠트시그모이드 전달함수의 범위로 정규화하여 신경회로망의 입력 벡터로 이용했을 때 최적의 학습 횟수를 보였다. 신경회로망의 학습은 적응 오차 역전파 알고리즘을 사용하였고, 학습계수를 0.01, 모우멘텀을 0.95로 하였을 때, 위영상에 대해서는 55회, 가슴영상은 55회, CT영상은 46회, 초음파영상은 55회 그리고 혈관영상에 대해서는 157회 등의 최적의 학습 횟수를 보이며 100%의 인식률을 보였다.

목차

등록된 정보가 없습니다.

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0