메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Chahnasir, E. Sadeghipour (Department of Civil Engineering, Qeshm International Branch, Islamic Azad University) Zandi, Y. (Department of Civil Engineering, Tabriz Branch, Islamic Azad University) Shariati, M. (Faculty of Civil Engineering, University of Tabriz) Dehghani, E. (Department of Civil Engineering, University of Qom) Toghroli, A. (Department of Civil Engineering, Faculty of engineering, University of Malaya) Mohamad, E. Tonnizam (Centre of Tropical Geoengineering [GEOTROPIK], Faculty Civil Engineering, Universiti Teknologi Malaysia) Shariati, A. (Department of Civil Engineering, South Tehran Branch, Islamic Azad University) Safa, M. (Department of Civil Engineering, Faculty of engineering, University of Malaya) Wakil, K. (Information Technology Department, Technical College of Informatics, Sulaimani Polytechnic University) Khorami, M. (Facultad de Arquitectura y Urbanismo, Universidad Tecnologica Equinoccial, Calle Rumipamba s/n y Bourgeois)
저널정보
테크노프레스 Smart structures and systems Smart structures and systems 제22권 제4호
발행연도
2018.1
수록면
413 - 424 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The factors affecting the shear strength of the angle shear connectors in the steel-concrete composite beams can play an important role to estimate the efficacy of a composite beam. Therefore, the current study has aimed to verify the output of shear capacity of angle shear connector according to the input provided by Support Vector Machine (SVM) coupled with Firefly Algorithm (FFA). SVM parameters have been optimized through the use of FFA, while genetic programming (GP) and artificial neural networks (ANN) have been applied to estimate and predict the SVM-FFA models' results. Following these results, GP and ANN have been applied to develop the prediction accuracy and generalization capability of SVM-FFA. Therefore, SVM-FFA could be performed as a novel model with predictive strategy in the shear capacity estimation of angle shear connectors. According to the results, the Firefly algorithm has produced a generalized performance and be learnt faster than the conventional learning algorithms.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0