메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Watanabe, Hiroshi (Institute of Chemical Research, Kyoto University) Inoue, Tadashi (Institute of Chemical Research, Kyoto University)
저널정보
한국유변학회 Korea-Australia rheology journal Korea-Australia rheology journal 제16권 제2호
발행연도
2004.1
수록면
91 - 99 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
For the Rouse chain composed of infinite number of beads (continuous limit), conformational changes during the creep and creep recovery processes was recently analyzed to reveal the interplay among all Rouse eigenmodes under the constant stress condition (Watanabe and Inoue, Rheol. Acta, 2004). For completeness of the analysis of the Rouse model, this paper analyzes the conformational changes of the discrete Rouse chain having a finite number of beads (N = 3 and 4). The analysis demonstrates that the chain of finite N exhibits the affine deformation on imposition/removal of the stress and this deformation gives the instantaneous component of the recoverable compliance, $J_{R}$(0) = 1/(N-l)v $k_{B}$T with v and $k_{B}$ being the chain number density and Boltzmann constant, respectively. (This component vanishes for N\longrightarrow$\infty$.) For N = 2, it is known that the chain has only one internal eigenmode so that the affinely deformed conformation at the onset of the creep process does not change with time t and $J_{R}$(t) coincides with $J_{R}$(0) at any t (no transient increase of $J_{R}$(t)). However, for N$\geq$3, the chain has N-l eigenmodes (N-l$\geq$2), and this coincidence vanishes. For this case, the chain conformation changes with t to the non-affine conformation under steady flow, and this change is governed by the interplay of the Rouse eigenmodes (under the constant stress condition). This conformational change gives the non-instantaneous increase of $J_{R}$(t) with t, as also noted in the continuous limit (N\longrightarrow$\infty$).X>).).X>).

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0