메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Kuo Chung-Feng Jeffrey (Department of Polymer Engineering, National Taiwan University of Science and Technology) Su Te-Li (Department of Polymer Engineering, National Taiwan University of Science and Technology)
저널정보
한국섬유공학회 Fibers and Polymers Fibers and polymers 제7권 제4호
발행연도
2006.1
수록면
404 - 413 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study examines multiple quality optimization of the injection molding for Polyether Ether Ketone (PEEK). It also looks into the dimensional deviation and strength of screws that are reduced and improved for the molding quality, respectively. This study applies the Taguchi method to cut down on the number of experiments and combines grey relational analysis to determine the optimal processing parameters for multiple quality characteristics. The quality characteristics of this experiment are the screws' outer diameter, tensile strength and twisting strength. First, one should determine the processing parameters that may affect the injection molding with the $L_{18}(2^1{\times}3^7)$ orthogonal, including mold temperature, pre-plasticity amount, injection pressure, injection speed, screw speed, packing pressure, packing time and cooling time. Then, the grey relational analysis, whose response table and response graph indicate the optimum processing parameters for multiple quality characteristics, is applied to resolve this drawback. The Taguchi method only takes a single quality characteristic into consideration. Finally, a processing parameter prediction system is established by using the back-propagation neural network. The percentage errors all fall within 2%, between the predicted values and the target values. This reveals that the prediction system established in this study produces excellent results.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0