메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Qu, W.L. (College of Civil Engineering and Architecture, Wuhan University of Technology) Chen, W. (College of Civil Engineering and Architecture, Wuhan University of Technology) Xiao, Y.Q. (Department of Building and Construction, City University of Hong Kong)
저널정보
테크노프레스 Structural engineering and mechanics : An international journal Structural engineering and mechanics : An international journal 제16권 제5호
발행연도
2003.1
수록면
581 - 595 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Since the conventional direct approaches are hard to be applied for damage diagnosis of complex large-scale structures, a two-step approach for diagnosing the joint damage of framed structures is presented in this paper by using artificial neural networks. The first step is to judge the damaged areas of a structure, which is divided into several sub-areas, using probabilistic neural networks with natural Frequencies Shift Ratio inputs. The next step is to diagnose the exact damage locations and extents by using the Radial Basis Function (RBF) neural network with the second Element End Strain Mode of the damaged sub-area input. The results of numerical simulation show that the proposed approach could diagnose the joint damage of framed structures induced by earthquake action effectively and has reliable anti-jamming abilities.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0