메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Lee, Woo-Young (College of Pharmacy, Sungkyunkwan University) Lee, Sun-Mee (College of Pharmacy, Sungkyunkwan University)
저널정보
대한약학회 Archives of pharmacal research : a publication of the Pharmaceutical Society of Korea Archives of pharmacal research : a publication of the Pharmaceutical Society of Korea 제26권 제12호
발행연도
2003.1
수록면
1,079 - 1,086 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The aim of this study was to investigate the effect of trauma on cytochrome P450 (CYP) gene expression and to determine the role of Kupffer cells in trauma-induced alteration of CYP isozymes. Rats underwent closed femur fracture (FFx) with associated soft-tissue injury under anesthesia. To deplete Kupffer cells in vivo, gadolinium chloride ($GdCl_3$) was intravenously injected at 7.5 mg/kg body wt., 1 and 2 days prior to FFx surgery. At 72 h of FFx, liver tissues were isolated to determine the mRNA and protein expression of CYP isozymes and NADPH-P450 reductase by reverse transcription-polymerase chain reaction and Western immunoblotting, respectively. In addition, the mRNA levels of tumor necrosis factor alpha (TNF-$\alpha$), inducible nitric oxide synthase (iNOS) and heme oxygenase-1 (HO-1) were evaluated. FFx increased the mRNA level of CYP1A1; an increase that was not prevented by $GdCl_3$. There were no significant differences in the mRNA expression of CYP1A2, 2B1 and 2E1 among any of the experimental groups. The protein levels of CYP2B1 and 2E1 were significantly decreased by FFx; a decrease that was not prevented by $GdCl_3$ treatment. The gene expression of NADPH-P450 reductase was unchanged by FFx. FFx significantly increased the expression of TNF-$\alpha$ mRNA; an increase that was attenuated by $GdCl_3$. The mRNA expression of HO-1 was increased by FFx, but not by $GdCl_3$ . Our findings suggest that FFx differentially regulates the expression of CYP isozyme through Kupffer cell-independent mechanisms.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0