메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Gupta, R.K. (School of Mechanical and Production Engineering, Nanyang Technological University) Tam, K.C. (School of Mechanical and Production Engineering, Nanyang Technological University) Ong, S.H. (School of Mechanical and Production Engineering, Nanyang Technological University) Jenkins, R.D. (Technical center, Union Carbide Asia Pacific Inc.)
저널정보
한국유변학회 Korea-Australia rheology journal Korea-Australia rheology journal 제12권 제2호
발행연도
2000.1
수록면
93 - 100 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The interactions between methylated $\beta$-cyclodextrin (CD) and hydrophobically modified alkali-soluble associative polymers (HASE) were examined by a rheological technique. The effect of "capping" of hydrophobes by methylated $\beta$-cyclodextrin on the viscosity and modulus was evaluated. Model HASE polymers with $C_1$to $C_{20}$ alkyl hydrophobic groups ethoxylated with~10 moles of ethylene-oxide (EO 10) and at concentrations up to 3 wt% were examined. With the addition of methylated $\beta$-CD, the steady shear viscosity profiles shift from a Newtonian profile to one that display a shear-thinning characteristic. Significant "capping" of the hydrophobes occurs for HASE polymers with $C_{l2}$, $C_{16}$ and $C_{20}$ hydrophobes as reflected by the large reduction in the viscosity. However, the steady shear viscosity remains constant when the concentration of $\beta$-CD exceeds 1 wt%, suggesting that $\beta$-CD is not able to fully encapsulate the hydrophobes of the HASE polymer. The temperature variation plots indicate that the activation energy of the HASE-EO10-$C_{20}$ system and $\beta$-CD is dependent on the magnitude of the applied shear stress. These results further reinforce the hypothesis that $\beta$-CD is not able to completely remove all the hydrophobic associations.phobic associations.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0