메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Song Eun-Ha (Department of Computer Science and Engineering, Ewha Womans University) Kim Min-Kyung (UC Irvine Institute for Genomics and Bioinformatics) Lee Sang-Ho (Department of Computer Science and Engineering, Ewha Womans University)
저널정보
한국유전체학회 Genomics & informatics Genomics & informatics 제4권 제3호
발행연도
2006.1
수록면
118 - 124 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
For the direct understanding of flow, pathway data are usually represented as directed graphs in biological journals and texts. Databases of metabolic pathways or signal transduction pathways inevitably contain these kinds of graphs to show the flow. KEGG, one of the representative pathway databases, uses the manually drawn figure which can not be easily maintained. Graph layout algorithms are applied for visualizing metabolic pathways in some databases, such as EcoCyc. Although these can express any changes of data in the real time, it exponentially increases the edge crossings according to the increase of nodes. For the understanding of genome scale flow of metabolism, it is very important to reduce the unnecessary edge crossings which exist in the automatic graph layout. We propose a metabolic pathway drawing algorithm for reducing the number of edge crossings by considering the fact that metabolic pathway graph is scale-free network. The experimental results show that the number of edge crossings is reduced about $37{\sim}40%$ by the consideration of scale-free network in contrast with non-considering scale-free network. And also we found that the increase of nodes do not always mean that there is an increase of edge crossings.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0