메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Woo Jung-Hoon (Seoul National University Biomedical Informatics [SNUBI]) Kim Hyeoun-Eui (Graduate Program in Health Informatics, University of Minnesota, Minneapolis) Kong Gu (Department of Pathology, College of Medicine and Molecular Biomarker Research Center, Hanyang University) Kim Ju-Han (Seoul National University Biomedical Informatics [SNUBI] and Human Genome Research Institute, Seoul National University College of Medicine)
저널정보
한국유전체학회 Genomics & informatics Genomics & informatics 제4권 제1호
발행연도
2006.1
수록면
40 - 44 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Toxicogenomics combines transcriptome, proteome and metabolome profiling with conventional toxicology to investigate the interaction between biological molecules and toxicant or environmental stress in disease caution. Toxicogenomics faces the problems of comparison and integration across different sources of data. Cause of unusual characteristics of toxicogenomic data, researcher should be assisted by data analysis and annotation for getting meaningful information. There are already existing repositories which claim to stand for toxicogenomics database. However, those just contain limited abilities for toxicogenomic research. For supporting toxicologist who comes up against toxicogenomic data flood, now we propose novel toxicogenomics knowledgebase system, XPERANTO-TOX. XPERANTO-TOX is an integrated system for toxicogenomic data management and analysis. It is composed of three distinct but closely connected parts. Firstly, Data Storage System is for reposit many kinds of '-omics' data and conventional toxicology data. Secondly, Data Analysis System consists of analytical modules for integrated toxicogenomics data. At last, Data Annotation System is for giving extensive insight of data to researcher.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0